

6th Advanced Course on Knee Surgery January 314-February 5<sup>th</sup>, 2016 Val d'Isère - France



January 31st – February 5<sup>th</sup> 2016 Val d'Isère

### **ACL ligamentization**



#### Prof Dr med Jacques Menetrey, MD, PhD

*Centre de médecine de l'appareil moteur et du sport - HUG Swiss Olympic medical Center Unité d' Orthopédie et Traumatologie du Sport (UOTS) Service de chirurgie orthopédique et traumatologie de l'appareil moteur* 

University Hospital of Geneva,





Geneva Switzerland





#### **Financial disclosure**

#### No conflict of interest to disclose



### Epidemiology

- 1 ACL reconstruction/2000 inhabitants in US
- 200' 000 ACL reconstructions/year in US
- Direct cost \$ 3 billions
- 120' 000 TKR/year

Borphy et al Am J Sports Med 2009

• About 31'000 ACL reconstructions/year in France

Symposium *French Society of Arthroscopy* Paris 2008

3750-4000 ACL reconstructions/year in Switzerland

#### Graft remodeling

#### • Still a matter of debate

### **Biological process**

 In animal models, the graft undergoes a process of adaptation rather than full restoration of the intact ACL's biological properties.

« Law of functional adaptation » Wilhem Roux An organ will adapt itself structurally to an alteration, quantitatively and qualitatively in function

# In human

- Same healing phases:
  - Graft necrosis, recellularisation, revascularization, ligamentization
- Remodeling is reduced
- Less necrosis (no more than 30%)
- Not all intrinsic grafts cells replaced by extrinsic cells
- Large area of normal collagen alignment and crimp pattern
- No excessive revascularization

#### ACL graft in human

• V. H. basketball player 29 y old BPTB ACL-R



### Ligamentisation

 V. H. basketball player 34 y old ACL BPTB, 5 years post-ACLrec



#### Even "two bundles"

 V. H. basketball player 34y old ACL BPTB, 5 years post-ACLrec



#### Basic science - Graft necrosis

#### Released of cytokines

- Matrix.-metalloproteinase (MMP-3)
- Tissue inhibitor metalloproteinase-1 (TIMP)-1
- Interleukin-6 and 8 (IL-6, IL-8)
- Tumor necrosis factor alpha (TNF-a)
- Il-1

Cameron et al *Am J Sports Med* 1997 Higuchi *Int Orthop* 2006

- Extended necrosis
- Collagen disturbance
- Myxoid degeneration
- Interfering process of revascularization

- Graft healing
  - Inflammatory phase (1-4<sup>th</sup> wk.)



- Proliferative phase (4-12<sup>th</sup> wk.)
- Ligamentization phase (12- ...th wk.)

Amiel et al J Orthop Res 1986

- Early healing phase
  - Central acellularity and necrosis
  - Influx of host cells
    - Inflammatory cells
    - Fibroblasts



- Complete replacement of viable graft cells by hosts cells around 2-4 weeks in animal models
   Kleiner et al J Orthop Res 1986 Kobayashi et al Trans Orthop Res 2005
- No revascularization

#### Proliferation phase (4-12 wks)

- Increased cellularity with proliferation of fibroblast – myofibroblasts
- Loss and reformation of collagen crimp
- Revascularization

- Increased collagen type III / fibronectin
- Increase smaller diameter collagen fibrils
- Increased GAG content



#### **Basic science** proliferation phase (4-12<sup>th</sup> wks)

#### • Recellularization (4-12 wks)



#### Scheffler et al Knee Surg Sports Traumatol Arthrosc 2008

#### **Basic science** proliferation phase (4-12<sup>th</sup> wks)

#### Revascularization (4-12 wks)



12 weeks

52 weeks

Scheffler et al Knee Surg Sports Traumatol Arthrosc 2008

#### Basic science: Proliferation phase (4-12 wks)



*Courtesy of Scheffler et al., Arthroscopy, Richard O*`*Conner Award 2007* 

- Ligamentization phase (12-... wks)
  - Remodeling phase:
    - Structural and mechanical adaptation
    - Increased in collagen content
    - Non-reducible/reducible cross-link ratio increase

Maeda et al *Clin Orthop Res*Jackson et al *Am J Sports Med*Kirkpatrick et al *J South Orthop Assoc*Nikolaou et al *Am J Sports Med*Arnoczky et al *J Bone Joint Surg*Shino et al *J Bone Joint Surg*Scheffler et al *Arthroscopy*

# Original ACL versus graft

- Collagen crimp pattern a sheep model
- Polarized light microscopy x200



Intact ACL

Flexor tendon graft at t=0



6 weeks

12 weeks



24 weeks

52 weeks

Scheffler et al Knee Surg Sports Traumatol Arthrosc 2008

# Original ACL versus graft

 Collagen remodeling sheep model



Intact ACL





12 weeks

52 weeks

#### Scheffler et al Knee Surg Sports Traumatol Arthrosc 2008

# Original ACL versus graft

- Similar macro-morphology within 6 to 12 months
- More type III collagen in the graft
- Unimodal pattern of small collagen fibers
- Crimp frequency remain increased in the graft
- In animal model, graft strength could never surpass 50-60% of the intact ACL

Abe et al Arthroscopy 1993 Jackson Am J Sports Med 1993 Liu et al CORR 1995 Weiler et al J Orthop Res 2002 Weiler et al Am j Sports Med 2004 Scheffler et al KSSTA 2008

# In summary

 The ligamentization process is an adaptative tranformation of the graft which does not lead to a full restoration of the intact ACL's biological properties.

### What we know !

- MECHANICAL ENVIRONMENT
  - Placement of the graft
  - Tensioning

- Rehabilitation
- Patient compliance
- It takes time...



## **Biology - biomechanics**

#### To carry out a good biology



#### No overloading of the graft

Overtensioning an ACL graft may adversely affect its biologic incorporation Yoshiya et al *Am J Sports Med* 1987

# Vascularization

- Overtensioning of the graft
- Patients habits:
  - Smoking, cocaine consumption
- Diabetes
- Choice of the graft
- Hypoxia

Period of avascular necrosis – decrease in VEGF expression

# **Cells repopulation**

- Vascularization
- GF cascade: TGF-b<sub>1</sub>, b-FGF, PDGF
- Age ?
- Genetic background ?
  - Fast healer ?
  - Slow healer ?

Kuroda et al KSSTA 2000

# Matrix remodeling

- GF cascade: TGF-b<sub>1</sub>, b-FGF, PDGF
- Vascularization
- Cell repopulation
- Age ?
- Genetic background ?
  - Fast healer ?
  - Slow healer ?

Kuroda et al KSSTA 2000

### Ligamentization

Patient's dependent



- Biological environment (smoking, cocaine, ectasy, diabetes)
- Mechanical environment
  - Placement of the graft
  - Tensioning
- Post-op rehabilitation

# What we know today in human

The "Ligamentization" Process in Anterior Cruciate Ligament Reconstruction

What Happens to the Human Graft? A Systematic Review of the Literature

Steven Claes,<sup>\*†</sup> MD, Peter Verdonk,<sup>‡</sup> MD, PhD, Ramses Forsyth,<sup>§</sup> MD, PhD, and Johan Bellemans,<sup>†</sup> MD, PhD Investigation performed at the Department of Orthopedic Surgery and Traumatology, University Hospitals Leuven, Belgium

- 4 studies with biopsies of human grafts after different time periods
- A free tendon graft can be sufficiently biologically converted into a ligament -"Ligamentization."
- Human graft is not going to be necrotic (Difference in comparison to animal studies)
- Histologically: After "ligamentization process" the graft shows similar structure in comparison to the original ACL (with ultrastructural differences)
- Different periods of converting process have been reported but there is no consensus of a distinguished time period of this process!

### What we know in 2016

The "Ligamentization" Process in Anterior Cruciate Ligament Reconstruction

What Happens to the Human Graft? A Systematic Review of the Literature

Steven Claes,\*<sup>†</sup> MD, Peter Verdonk,<sup>‡</sup> MD, PhD, Ramses Forsyth,<sup>§</sup> MD, PhD, and Johan Bellemans,<sup>†</sup> MD, PhD Investigation performed at the Department of Orthopedic Surgery and Traumatology, University Hospitals Leuven, Belgium

| Animals           Early Remodeling         Maturation |                   |          |            |            |            |    |    |    | ScheffleretaL (2008) <sup>38</sup> |                                        |
|-------------------------------------------------------|-------------------|----------|------------|------------|------------|----|----|----|------------------------------------|----------------------------------------|
| Humans<br>Early                                       | Remo              | xdeling  |            |            | Maturation |    |    | Qu | iescent                            | Rougraff et al. (1993) <sup>35</sup>   |
| Early Remod                                           |                   | modeling | Maturation |            |            |    |    |    |                                    | Abe et al. (1993) <sup>1</sup>         |
|                                                       | Early Remodeling. |          | Maturation |            |            |    |    |    |                                    | Falconiero et al. (1998) <sup>11</sup> |
|                                                       |                   | Early    |            | Remodeling | Maturation | n  |    |    |                                    | Sanchez et al. (2010) <sup>37</sup>    |
| 0 3                                                   | 6                 | 9        | 12         | 15         | 18 21      | 24 | 30 | 36 | 48                                 | Months after ACLR                      |

- After 6 months (minimum) sufficient ligament properties can be expected
- No information about core biopsies....!



#### SCIENTIFIC ARTICLE

Evaluation with contrast-enhanced magnetic resonance imaging of the anterior cruciate ligament graft during its healing process: a two-year prospective study

Aikaterini Ntoulia • Frederica Papadopoulou • Franceska Zampeli • Stavros Ristanis • Maria Argyropoulou • Anastasios Georgoulis



#### 6 months



#### 12 months



#### 24 months

*Conclusion* During the healing process the amount of revascularization tissue influences the MR imaging characteristics of the graft according to the examined site and the time interval after surgery. By 2 years postoperatively, revascularization completion coincides with the homogeneously low signal intensity of the graft, closely resembling native ACL.



Entra-articular site Entransserus tibial turnel site Entransserus justa screw aite

#### **Tunnel healing**

#### Bone-to-bone healing

#### Tendon-bone healing



#### Tendon-to-bone healing

- Three factors to explain ineffective healing:
  - Presence of persistent inflammation
  - Tendon-bone interface motion
  - Insufficient number of undifferentiated cells

#### Role of inflammation

- Macrophages depletion:
  - Rat model
  - Reduced fibro-vascular scar
  - Enhanced bone ingrowth
  - Improved collagen continuity between bone and tendon
  - NSAIDs delay ligament healing

Hays et al *JBJS* 2009 Warden et al *Am J Sports Med* 2006

#### Tendon-to-bone micromotion

- Inverse correlation between motion and healing in the femoral tunnel
- Graft tunnel motion may impair early graft incorporation and may lead to osteoclastmediated bone resorption

Rodeo et al *JBJS* 2003 Rodeo et al *Am J Sports Med* 2006

- No "aggressive" or accelerated rehabilitation
- Immobilization?

#### **Fixation**

| TABLE 2         Ultimate Tensile Load of Various Fixation Devices <sup>a</sup> |                              |         |  |  |  |  |  |
|--------------------------------------------------------------------------------|------------------------------|---------|--|--|--|--|--|
| Type of fixation device                                                        | Ultimate tensile<br>load (N) | Ref.    |  |  |  |  |  |
| Indirect                                                                       |                              |         |  |  |  |  |  |
| Single polyester tape loop                                                     | $375\pm8$                    | 104     |  |  |  |  |  |
| Double polyester tape loop                                                     | 612 - 651                    | 84, 104 |  |  |  |  |  |
| Single loop 5 Ethibond                                                         | $238 \pm 3$                  | 104     |  |  |  |  |  |
| Double loop 5 Ethibond                                                         | $463 \pm 18$                 | 104     |  |  |  |  |  |
| Direct soft tissue                                                             |                              |         |  |  |  |  |  |
| Metal interference screw (7 mm)                                                | $242\pm90$                   | 20      |  |  |  |  |  |
| Bioabsorbable screw (7 mm)                                                     | $341\pm163$                  | 20      |  |  |  |  |  |
| Bone mulch screw                                                               | $1126\pm80$                  | 72      |  |  |  |  |  |
| Tandem soft tissue washers                                                     | 768                          | 72      |  |  |  |  |  |
| Cross-pin technique (animal)                                                   | 725 - 1600                   | 22      |  |  |  |  |  |
| Suture-post (animal)                                                           | 374                          | 78      |  |  |  |  |  |
| Direct bone                                                                    |                              |         |  |  |  |  |  |
| Metal interference screw (7 mm)                                                | $640\pm201$                  | 81      |  |  |  |  |  |
| Metal interference screw (9 mm)                                                | 276 - 436                    | 59, 75  |  |  |  |  |  |
| Metal interference screw (11 mm)                                               | 302                          | 75      |  |  |  |  |  |
| Metal interference screw (13 mm)                                               | 328                          | 75      |  |  |  |  |  |
| Metal interference screw (15 mm)                                               | 328                          | 75      |  |  |  |  |  |
| Bioabsorbable screw (7 mm)                                                     | 330-418                      | 81      |  |  |  |  |  |
| Bioabsorbable screw (9 mm)                                                     | 565                          | 59      |  |  |  |  |  |
| Staples                                                                        | 588                          | 32      |  |  |  |  |  |
|                                                                                |                              |         |  |  |  |  |  |

 $^{\alpha}$  Experiments were performed on human cadaveric knees unless specified.



Ishibashi et al *Am J Sports Med* 1996 Fu et al *Am J Sports Med* 1999

#### Tibial and Femoral Tunnel Changes After ACL Reconstruction

#### A Prospective 2-Year Longitudinal MRI Study

Alexander E. Weber,<sup>\*</sup> MD, Demetris Delos,<sup>†</sup> MD, Hanna N. Oltean,<sup>\*</sup> MPH, Katherine Vadasdi,<sup>†</sup> MD, John Cavanaugh,<sup>‡</sup> PT, MEd, ATC, SCS, Hollis G. Potter,<sup>§</sup> MD, and Scott A. Rodeo,<sup>†||</sup> MD Investigation performed at the Hospital for Special Surgery, New York, New York, USA

- n=18
- MRI at T0, 6, 12, 24, 52, 104 weeks
- Look at the tunnel CSA



Tunnel expansion occurs early (0-6 w) and at tunnel aperture
Younger age, male sex and time between injury and reconstruction (>1 year) were strong predictors of tunnel expansion

Weber et al Am J Sports Med 2015

# In summary

- Better understanding of healing processes
- Ligamentization does occur in human ACL
- Beware of the use of NSAIDs
- Patient's profile
- Rehab protocol
- It may take time...



### 17<sup>th</sup> ESSKA Congress



ESSKA President Matteo Denti (Italy) **Congress President** Joan C. Monllau (Spain) Scientific Chairman Roland Becker (Germany) Gino M. Kerkhoffs (Netherlands) Pablo E. Gelber (Spain) Organiser & Contact Intercongress GmbH esska@intercongress.de



